

Goals

- · Understand goals of entity authentication
- Understand strength and limitations of entity authentication protocols including passwords
- Understand subtle problems when entity authentication protocols are deployed in practice
- Understand variants of key establishment protocols and subtle attacks

Identification

- the problem
- passwords
- challenge response with symmetric key and MAC (symmetric tokens)
- challenge response with public key (signatures, ZK)
- biometry

ert5^r\$#89Oy

- what someone knows
- password, PIN
- what someone has
- magstripe card, smart card
- what someone is (biometrics)
 - fingerprint, retina, hand shape,...
- how someone does something
 - manual signature, typing pattern
- where someone is
 - dialback, location based services (GSM, Galileo)

Improving password security

- Apply the function f "x" times to the password (iteratively)
 - if x = 100 million, testing a password guess takes a few seconds
 - need to increase x with time (Moore's law)
 - examples: PBKDF2 (Password-Based Key Derivation Function 2), scrypt, bcrypt
- Disadvantage: one cannot use the same hashed password file on a faster server and on an embedded device with an 8-bit microprocessor
 - need to use different values of x depending on the computational power of the machine

Improvement: Static Data Authentication

- Replace K by a signature of a third party CA (Certification Authority) on Alice's name: SigSK_{CA} (Alice) = special certificate
- Advantage: can be verified using a public string PK_{CA}
- Advantage: can only be generated by CA
- Disadvantage: signature = 40..128 bytes
- Disadvantage: can still be copied/intercepted

Possibility of replay: liveliness is missing

ZK definitions complete: if Alice knows the secret, she can carry outthe protocol successfully sound: Eve (who wants to impersonate Alice) can only convinceBob with a very small probability that

she is Alice;
zero knowledge: even a dishonest Bob does not learn anything except for 1 bit (he is talking to Alice); he could have produced himself all the other information he obtains during the protocol.

	Overview Identification Protocols										
		Guess	Eavesdrop channel (liveliness)	Impersonation by Bob	Secret info for Bob	Security					
	Password	-	-	-	_	1					
	Magstripe (SK)	+	-	-	-	2					
	Magstripe (PK)	+	-	-	+	3					
	Dynamic password	+	+	-	-	4					
	Smart card (SK)	+	+	-	_	4					
	Smart Card (PK)	+	+	+	+	5					

Entity authentication in practice

- Phishing mutual authentication
- Forward credentials biometry
- Interrupt after initial authentication authenticated key establishment
- Mafia fraud distance bounding
- Protocol errors check that local device authentication is linked to entity authentication protocol (example: EMV)

25

Mutual authentication

- Phishing is impersonating of the verifier (e.g. the bank)
- Most applications need entity authentication in two directions
- !! This is not complete the same as 2 parallel unilateral protocols for entity authentication

2 stage authentication

- · Local: user to device
- Device to rest of the world

26

Biometry

- Based on our unique features
- Identification or verification
 - Is this Alice?
 - Check against watchlist
 - Has this person ever registered in the system?

27

Some unique features DNA skin Iris en violencement en

Biometric procedures

- Registration
 Tamplete extra
- · Template extraction
- Measurement
- Processing
- Template matching
- Link with applications

Figure 2. A generic biometric system.

Enrollment

Template Database

Biometric
Sensor

Feature Extractor

Feature Matcher

Feature Matcher

29

Robustness/performance

- · Performance evaluation
 - False Acceptance Ratio or False Match Rate
 - False Rejection Ratio or False Non-Match Rate
- · Application dependent

Fingerprint (2)

- Small sensor
- Small template (100 bytes)
- Commercially available
 - Optical/thermical/capacitive
 - Liveness detection
- Problems for some ethnic groups and some professions
- Connotation with crime

33

Fingerprint (3): gummy fingers Making an Artificial Finger directly from a Live Finger How to make a mold Put the plastic into hot water to soften it. Press a live finger against it. Prour the liquid into the mold. Put it into a refrigerator to cool. It takes around 10 minutes. The gummy finger

Hand geometry

- Flexible performance tuning
- Mostly 3D geometry
- Example: 1996 Olympics

Voice recognition

- Speech processing technology well developed
- Can be used at a distance
- Can use microphone of our gsm
- But tools to spoof exist as well
- Typical applications: complement PIN for mobile or domotica

Iris Scan

- · No contact and fast
- · Conventional CCD camera
- 200 parameters
- Template: 512 bytes
- · All etnic groups
- · Reveals health status

Retina scan

- Stable and unique pattern of blood vessels
- Invasive
- · High security

Manual signature

- · Measure distance, speed, accelerations, pressure
- Familiar
- · Easy to use
- Template needs continuous update
- · Technology not fully mature

Facial recognition

- User friendly
- No cooperation needed
- · Reliability limited
- · Robustness issues
 - Lighting conditions
 - Glasses/hair/beard/...

Comparison

Feature	Uniqueness	Permanent	Performance	Acceptability	Spoofing
Facial	Low	Average	Low	High	Low
Fingerprint	High	High	High??	Average	High??
Hand geometry	Average	Average	Average	Average	Average
Iris	High	High	High	Low	High
Retina	High	Average	High	Low	High
Signature	Low	Low	Low	High	Low
Voice	Low	Low	Low	High	Low

Biometry: pros and cons

- · Real person
- · User friendly
- · Cannot be forwarded
- · Little effort for user
- Privacy (medical)
- Intrusive?
- · Liveliness?
- · Cannot be replaced
- Risk for physical attacks
- Hygiene
- Does not work everyone, e.g., people with disabilities
- Reliability
- Secure implementation: derive key in a secure way from the biometric
- · No cryptographic key

Solution

- Authenticated key agreement
- Run a mutual entity authentication protocol
- Establish a key
- Encrypt and authenticate all information exchanged using this key

44

Location-based authentication

- Distance bounding: try to prove that you are physically close to the verifier
- Other uses of "location"
 - Dial-back: can be defeated using fake dial tone
 - IP addresses and MAC addresses can be spoofed
 - Mobile/wireless communications: operator knows access point, but how to convince others?
 - Trusted GPS: Galileo?

46

Authentication with device

- E.g. smart card, secure login token
- Needs 2 stages
 - Local: user to device
 - Device to rest of the world
- Are these 2 stages connected properly?

Warning about EMV
http://www.cl.cam.ac.uk/research/security/banking/nopin/oakland10chipbroken.pdf

• EMV PIN verification "wedge" vulnerability S.J. Murdoch, S. Drimer, R. Anderson, M. Bond, IEEE Security & Privacy 2010

Guidelines

NIST Special Publication 800-63 Version 1.0.2 (2006): Electronic Authentication Guideline: identifies four levels of assurance

http://csrc.nist.gov/publications/nistpubs/800-63/SP800-63V1_0_2.pdf

See http://csrc.nist.gov/publications/PubsSPs.html for about 120 Special Publications (800 Series) from NIST on computer security and cryptography

49

Key establishment

- The problem
- How to establish secret keys using secret keys?
- How to establish secret keys using public keys?
 - Diffie-Hellman and STS
- How to distribute public keys? (PKI)

Key establishment: the problem

- Cryptology makes it easier to secure information, by replacing the security of information by the security of keys
- The main problem is how to establish these keys
 - 95% of the difficulty
 - integrate with application
 - if possible transparent to end users

GSM (2)

- SIM card with long term secret key K (128 bits)
- secret algorithms
 - A3: MAC algorithm
 - A8: key derivation algorithm
 - A5.1/A5.2: encryption algorithm
- anonimity: IMSI (International Mobile Subscriber Identity) replaced by TIMSI (temporary IMSI)
 - the next TIMSI is sent (encrypted) during the call set-up

Point-to point symmetric key distribution

Before: Alice and Bob share long term secret K_{AB}

generate session key k

EK_{AB}(k || time || Bob)
Ek (time || Alice || hello)

decrypt extract k

- After: Alice and Bob share a short term key k
 - which they can use to protect a specific interaction
 - which can be thrown away at the end of the session
- · Alice and Bob have also authenticated each other

Symmetric key distribution with 3rd party(2)

- After: Alice and Bob share a short term key k
- Need to trust third party!
- Single point of failure in system

Kerberos/Single Sign On (SSO)

· Alice uses her password only once per day

Kerberos/Single Sign On (2)

- Step 1: Alice gets a "day key" K_A from AS (Authentication Server)
 - based on a Alice's password (long term secret)
 - $-K_A$ is stored on Alice's machine and deleted in the evening
- Step 2: Alice uses K_A to get application keys k_i from TGS (Ticket Granting Server)
- Step 3: Alice can talk securely to applications (printer, file server) using application keys k_i

A public-key distribution protocol: Diffie-Hellman

• Before: Alice and Bob have never met and share no secrets; they know a public system parameter α

generate x α^x generate y compute α^y compute $k = (\alpha^y)^x$ compute $k = (\alpha^x)^y$

- After: Alice and Bob share a short term key k
 - Eve cannot compute k: in several mathematical structures it is hard to derive x from α^x (this is known as the discrete logarithm problem)

Diffie-Hellman (continued)

generate x compute α^x generate y compute α^y compute α^y compute $k = (\alpha^y)^x$ compute $k = (\alpha^x)^y$

- BUT: How does Alice know that she shares this secret key k with Bob?
- Answer: Alice has no idea at all about who the other person is! The same holds for Bob.

Meet-in-the middle attack

- Eve shares a key k₁ with Alice and a key k₂ with Bob
- · Requires active attack

Station to Station protocol (STS)

- The problem can be fixed by adding digital signatures
- This protocol plays a very important role on the Internet (under different names)

Key transport using RSA

generate k $E_{PKB}(k)$ $E_{PKB}(k)$ $E_{PKB}(k)$ $E_{PKB}(k)$ $E_{PKB}(k)$ $E_{PKB}(k)$ $E_{PKB}(k)$

- How does Bob know that **k** is a fresh key?
- How does Bob know that this key k is coming from Alice?
- How does Alice know that Bob has received the key
 k and that Bob is present (entity authentication)?

Key transport using RSA (2)

generate k $E_{PKB}(k) \qquad E_{PKB}(k \parallel t_{A}) \qquad \text{decrypt using } SKB \text{ to obtain } k$

• Freshness is solved with a timestamp t_A

Key transport using RSA (3)

generate k

 $Sig_{SKA}(E_{PKB}(k || t_A))$ SKB and verify using PKA

- · Alice authenticates by signing the message
- There are still attacks (signature stripping...)

Key transport using RSA (4): X.509

generate <mark>k</mark>

Mutual: B can return a similar message including part of the first message Problem (compared to D-H/STS): lack of **forward secrecy**

If the long term key *SKB* of Bob leaks, all past session keys can be recovered!

A simple protocol

Reflection attack

• Eve does not know k and wants to impersonate Bob

Conclusions

- Properties of protocols are subtle
- Many standardized protocols exist

 ISO/IEC, IETF
- Difficulty: which properties are needed for a specific application
- Rule #1 of protocol design: Don't

 not even by simplifying existing protocols

Recommended reading

- Dirk Balfanz, Richard Chow, Ori Eisen, Markus Jakobsson, Steve Kirsch, Scott Matsumoto, Jesus Molina, Paul C. van Oorschot: The Future of Authentication. IEEE Security & Privacy 10(1): 22-27 (2012)
- Joseph Bonneau, Cormac Herley, Paul C. van Oorschot, Frank Stajano: The Quest to Replace Passwords: A Framework for Comparative Evaluation of Web Authentication Schemes. IEEE Symposium on Security and Privacy 2012: 553-567